

HICHROM Chromatography Columns and Supplies

LC COLUMN SELECTION Chiral Phases

Catalogue 9

Hichrom Limited

1 The Markham Centre, Station Road Theale, Reading, Berks, RG7 4PE, UK Tel: +44 (0)118 930 3660 Fax: +44 (0)118 932 3484 Email: sales@hichrom.co.uk www.hichrom.co.uk

CHIRAL PHASES

In many biological processes, the activity of one member of an enantiomeric pair can be contrasted with the inactivity or even harmful activity of the other. The successful development of chiral stationary phases (CSPs) for HPLC and SFC now allows us to monitor the optical purity of a bulk drug and its presence in formulations or biological fluids. Further applications can be found within the agrochemical and related industries. The main types of HPLC/SFC CSPs are discussed below, with examples listed on pages 56-57. Please see pages 286, 287 and 293 for GC chiral phases.

Immobilised Polysaccharide CSPs

Coated polysaccharide CSPs are limited in the solvents that may be used in the eluent and as sample diluents. Newer immobilised CSPs allow the use of a more robust and expanded range of solvents and bring new selectivity and higher sample solubility relative to conventionally coated CSPs.

Cellulose and Amylose Bound

Cellulose and amylose are linear polymers of optically active glucose units with molecular weights of 250,000 to 1,000,000. Cross-linked derivatives of these materials coated onto silica give unique chiral selectivity. Their chiral recognition properties depend on the 'steric fit' of guest enantiomers into the material's cavities. Choice of eluent is the key factor affecting chiral recognition.

'Brush-Type'

Although 'brush-type' (Pirkle) chiral selectors are relatively simple molecules, their well defined structure contains three types of functional groups capable of participating in charge transfer (π - π bonding), hydrogen bonding ('dipole stacking' interactions) and steric effects. The monolayer of chiral selector covalently bound to the silica surface usually gives a column of relatively high capacity and efficiency but often with limited chiral discrimination ability. Since the synthesis of the popular D-3,5-dinitrobenzoylphenylglycine phase, significant numbers of these multiple interaction CSPs have been synthesised. Polyaromatic hydrocarbon derivative CSPs are the most recent additions to the range. All 'brush-type' phases are typically used with normal-phase eluents.

Protein Bound

Proteins are high molecular weight polymers containing chiral sub-units. When bound to silica they act as very effective CSPs. The binding or complexation of small enantiomeric molecules is often stereospecific, especially for serum proteins such as α_i -acid glycoprotein (AGP) or human serum albumin (HSA). The additional stability of the Ultron ES-OVM and ES-Pepsin columns enable them to be used with high organic content eluents. Immobilised enzymes can similarly be used. Protein immobilised CSPs are typically used in buffered aqueous eluents compatible with many biological samples. They offer good selectivity. Enantiomer retention and stereoselectivity can often be significantly altered by changes in eluent pH or modifier concentration. Their low capacity makes them unsuitable for preparative applications.

Cyclodextrin Inclusion

Cyclodextrins are a class of oligosaccharides containing six to twelve optically active glucose units. They are covalently bound to silica to form the corresponding CSP. The physical shape of these molecules is that of a truncated cone, the internal diameter of which is proportional to the number of glucose units. The interior of the cavity is relatively hydrophobic. Secondary hydroxyl groups at the entrance to the cavity contribute to the separation process. The relative stability of the inclusion complexes formed by the enantiomers of the guest molecule at the edge of the cyclodextrin cavity dictates the degree of separation. β -Cyclodextrin and its derivatives are the most commonly used CSPs of this type. Cyclodextrin CSPs are used in reversed-phase and are suitable for preparative separations.

Crown Ether

Chiral recognition with crown ether phases is achieved when a complex is formed between the crown ether and an ammonium ion from the analyte. These phases are used for solutes with a primary amino group at or near its chiral centre, such as amino acids and amino alcohols.

Ligand Exchange

Ligand exchange chiral phases are characterised by the attachment of a chiral chelating ligand to the stationary support. In the presence of an appropriate transition metal cation such as copper (II), a molecular complex is formed with the chiral stationary phase ligand and the analyte. Compounds that are suitable for chiral ligand exchange are α -amino acids, hydroxy acids and small peptides.

Network Polymeric

In a network polymeric CSP the chiral selector is anchored into a network polymer by a cross-linking reaction which simultaneously bonds it to the silica. The aim is to combine in one CSP the efficiency and capacity of 'brush-type' structures with the chiral recognition power of those phases based on chiral polymers.

Chiral Phases (continued)

Chiral Phases

CHIRA-chrom-1 D-Phenylglycine 5 140 L-Phenylglycine 5 High efficiency and capacity. 140)
CHIRA-chrom-1 Hichrom Brush L-Phenylglycine 5 High efficiency and capacity. 140)
)
L-Leucine 5 Low cost 14(,
CHIRA-chrom-2 Dinitrophenyltartramide 5 140)
ChiraDexMerckCyclodextrin β -Cyclodextrin5Forms inclusion complexes180)
CHIRALPAK AGPProtein α_1 -Acid glycoprotein588, 8	39
CHIRALPAK CBH Enzyme Cellobiohydrolase 5 Widely used. pH variation a 88, 8	39
CHIRALPAK HSA Protein Human serum albumin 5 88, 8	39
CHIRALPAK IA Amylose Amylose derivative 3, 5 81, 82, 8	86, 87
CHIRALPAK IB Cellulose Immobilised cellulose 3, 5 81, 82, 8	36, 87
CHIRALPAK IC Cellulose derivative 3, 5 Broad application range 81, 82, 8	36, 87
CHIRALPAK ID Amylose 3, 5 81, 82, 8	36, 87
CHIRALPAK IE Chiral Amylose Immobilised amylose 3, 5 81, 82, 8	36, 87
CHIRALPAK IFTechnologies2Amylose3, 581, 82, 8	36, 87
CHIRALPAK AD Amulasa dariustiva 3, 5, 10 83, 84, 8	36, 87
CHIRALPAK AS 3, 5, 10 Unique separation 83, 84, 8	36, 87
CHIRALCEL OD Colluloso dorivativo 3, 5, 10 applications. Very versatile 83, 84, 8	36, 87
CHIRALCEL OJ 3, 5, 10 83, 84, 8	36, 87
CHIRALPAK QD-AX Quinidine derivative 5 Useful for chiral acids	
CHIRALPAK QN-AX Quinine derivative 5 85	
CROWNPAK Crown ether 18-crown-6 type crown ether 5 Suitable for amino acids and primary amines 90	
Chirobiotic R Ristocetin A 5	
Chirobiotic T Macrocyclic Teicoplanin 5 Broad selectivity -	
Chirobiotic V Supelco ¹ Vancomycin 5	
Cyclobond I β-Cyclodextrin 5 Forms inclusion complexes	
Cyclobend II γ-Cyclodextrin 5 -	
ChiroSil Regis/RStech Crown ether (18-crown-6)- tetracarboxylic acid 5, 10 Suitable for primary amines and amino acids 208	3
DACH-DNB 5 204, 205	5, 207
ULMO <u>5</u> π -electron acceptor/donor. 204, 205	5, 207
Whelk-01/Whelk-02 5, 10 204, 205	5, 207
α -Burke 2 3,5-Dinitrobenzoyl 5 204, 2	207
β-GEM 1 5 204, 2	207
Leucine 5π -electron acceptor 204, 2	207
Phenylglycine 5 204, 2	207
Pirkle-1J β-Lactam derivative 5 204, 2	207
RegisCell Cellulose Cellulose derivative 5, 10 Broad application range 206, 2	207
RegisPackAmyloseAmylose derivative5, 10Dioda application range206, 2	207
RegisPack CLA-1 Amylose Chlorinated amylose derivative 10 Complementary selectivity to RegisCell and RegisPack 206, 2	207
Kromasil AmyCoat Amylose Amylose derivative 152, 1	53
Kromasil CelluCoat Cellulose Cellulose derivative 152, 1	53
Kromasil DMB Aczu Nouce Acylated N,N'-diallyl-L- 5, 10 High stability and capacity. Suitable 154, 1	55
Kromasil TBB tartardiamide 5, 10 for preparative applications 154, 1	55

Please contact Hichrom for ordering information CHIRALPAK ZWIX phases also available - see page 5

Chiral Phases (continued)

Chiral Phases (continued)

Phase	Manufacturer	Chiral Type	Chiral Selector	Particle Size (µm)	Features	Page
NUCLEODEX β-OH	Macherey-Nagel	Cyclodextrin	β-Cyclodextrin	5	Reversed-phase applications	169
NUCLEODEX $\alpha\text{-PM}$			Permethylated α -, β - and γ -cyclodextrins respectively	5		169
NUCLEODEX β -PM				5		169
NUCLEODEX y-PM				5		169
NUCLEOSIL CHIRAL-1		Ligand exchange	L-Hydroxyproline-Cu ²⁺ complex	5	α -Amino acid applications	169
RESOLVOSIL BSA-7		Protein	Bovine serum albumin	7		169
NUCLEOCEL DELTA		Cellulose	Cellulose derivative	5	Broad application range	169, 170
ORpak CDA	Shodex	Cyclodextrin	lpha-Cyclodextrin	6	Polyhydroxymethacrylate base material	214
ORpak CDB			β-Cyclodextrin	6		214
ORpak CDC			γ-Cyclodextrin	6		214
ORpak CDBS			β-Cyclodextrin	3	Silica base	214
ORpak CRX		Ligand exchange	L-Amino acid derivative	6	Suitable for underivatised amino acids	214
Ultron ES-OVM	- Shinwa Chemical _ Industries	Protein	Ovomucoid	5, 10	USP L57 column	260
Ultron ES-Pepsin			Pepsin	5	Suitable for basic compounds	260
Ultron ES-CD		Cyclodextrin	β-Cyclodextrin	5	Suitable for hydrophobic cyclic compounds	260
Ultron ES-PhCD			Phenylcarbamated β-cyclodextrin	5		260
YMC Chiral CD BR	YMC ³	Cyclodextrin	Bromide derivatives of cyclodextrin (α , β or γ)	5	Separates wide range of polar compounds	274
YMC Chiral NEA		Brush	lpha-Naphthylethylamine	5	NP or RP applications	274
YMC Sumichiral OA series		Various	Various	5	17 different phases	274
ZirChrom Chiral LEU	ZirChrom	Brush	Leucine derivative	3, 5	Zirconia base material	277
ZirChrom Chiral NESA			Naphthylethylsuccinamic acid derivative	3, 5		277
ZirChrom Chiral PG			Phenylglycine derivative	3, 5		277
ZirChrom CelluloZe		Cellulose	Cellulose derivative	3, 5		277
3 VMC CHIRAL polycaccharide phas		5				

VIC CHIRAL polysaccharide phases also available – see page 5

Hichrom Limited